Thursday, 17 May 2012

Paralyzed Patients Move a Robotic Arm With Their Own Thoughts

 
Concentrating deeply, Cathy Hutchinson stared at the tumbler of coffee on the table in front of her wheelchair. A cup-shaped dome on her head powered her small neural implant, capturing signals from her motor cortex as she thought about holding the mug. Slowly, the robot arm began to move.

The elbow swung forward, the wrist turned and the fingers clasped around the cup. A moment later, she took a long drink — the first time since her stroke 15 years ago that she enjoyed a sip of coffee without a caregiver’s help. This feat is part of an ongoing clinical trial using a neural interface system, the first demonstration and the first published study of people using their own brain signals to control a robotic arm. It’s a major breakthrough for neuroscience and engineering, and it could someday help people with paralysis live more independently.

Brain-controlled technologies could restore communication, mobility and independence for patients like Hutchinson, who is identified as patient S3, said Dr. Leigh Hochberg, engineering professor at Brown University and a neurologist at Massachusetts General Hospital. “We are hoping to provide a technology that will translate the intention to move, as decoded directly from brain signals, back into commands to control assistive devices or prosthetic limbs,” he said.

Previous research by this team proved that paralyzed patients could control a computer cursor with their thoughts, and last fall, neuroscientists at Duke Medical Center proved that monkeys could control a robotic arm with their thoughts. This new paper, appearing today in Nature, shows it can work in humans. Hutchinson had the implant for five years, according to study co-author John Donoghue, who has led the development of the technology known as BrainGate. The fact that it worked for so long — both the implant, and her motor cortex itself — is an encouraging sign, he said.

“Fifteen years after her brain became disconnected from her limbs after her brain stroke, she was still able to create all the neural signals,” he said.

No comments:

Post a Comment